Face Normals "In-the-Wild" Using Fully Convolutional Networks
نویسندگان
چکیده
In this work we pursue a data-driven approach to the problem of estimating surface normals from a single intensity image, focusing in particular on human faces. We introduce new methods to exploit the currently available facial databases for dataset construction and tailor a deep convolutional neural network to the task of estimating facial surface normals ‘in-the-wild’. We train a fully convolutional network that can accurately recover facial normals from images including a challenging variety of expressions and facial poses. We compare against state-of-the-art face Shape-from-Shading and 3D reconstruction techniques and show that the proposed network can recover substantially more accurate and realistic normals. Furthermore, in contrast to other existing face-specific surface recovery methods, we do not require the solving of an explicit alignment step due to the fully convolutional nature of our network.
منابع مشابه
Detecting Faces Using Region-based Fully Convolutional Networks
Face detection has achieved great success using the region-based methods. In this report, we propose a region-based face detector applying deep networks in a fully convolutional fashion, named Face R-FCN. Based on Region-based Fully Convolutional Networks (R-FCN), our face detector is more accurate and computationally efficient compared with the previous R-CNN based face detectors. In our appro...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملDecision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks
Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017